Dog No				
Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., MATHEMATICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
VI	PART-III	CORE	U21MA613	COMPLEX ANALYSIS

Date & Session:24.04.2025/FN Time: 3 hours Maximum: 75 Marks

	w 5000.	UII.27.	04.2025/FN	11me : 3 n	Juis	Maximum: 75 Marks	
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION - A (10 X 1 = 10 Marks)</u> Answer <u>ALL</u> Questions.				
CO1	K1	1.	If $f(z)=z^3$, $z=x+iy$ to a) x^3-3xy^2	hen the value of v b) 3x²y-y³	(x,y) is. c) 3xy ² -y ³	d) 3x ² y-x ³	
CO1	K2	2.	The Complex form a) $f_x = if_y$	n of CR equation if b) f_y =- if_x	c) $f_x = -if_y$	d) $f_x = f_y$	
CO2	K1	3.	Any bilinear tran a) Parabolic	sformation with o	nly one finite fixed c) Elliptic	-	
CO2	K2	4.	The transformat a) bilinear transfo c) inverse transfo	ormation	b) not a bilinear		
CO3	K1	5.	The value of $\int_c \frac{d}{z}$.	$\frac{z}{-3}$ where C is the c b) -2		d) 1	
CO3	K2	6.	The value of $\frac{1}{2\pi i} \int$ a) 15	$\int_{c}^{c} \frac{z^{2+5}}{z-3} dz \text{ where C i}$ b) 14	s z =4 is. c) 10	d) 0	
CO4	K1	7.	The Taylors series expansion of f(z) about the point zero is called the. a) Laurents series b) Maclaurins series c) Power series d) None of these				
CO4	K2	8.	The zero of f(z)=si	b) 2	c) 0	d) 3	
CO5	K1	9.	The poles of $f(z) = a$) 2,3	$\frac{z^2}{(z-2)(z-3)}.$ b) -2,3	c) 2,-3	d)-2,-3	
CO5	K2	10.	The residue of f(z a) 0	$)=\frac{e^{z}}{z^{2}} \text{ is.}$ b) 1	c) 2	d) 3	
Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B}{\text{Answer }} \text{ (5 X 5 = 25 Marks)}$ Answer $\frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$				
CO1	КЗ	11a.	State and Prove of	complex form of C	R equations. (OR)		
CO1	КЗ	11b.	If $\frac{\partial^2}{\partial x \partial y} = \frac{\partial^2}{\partial y \partial x}$ prove	that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$	(OII)		

CO2	КЗ	12a.	Prove that any bilinear transformation preserves cross ratio. (OR)
CO2	КЗ	12b.	Find the invariant points of the transformation. $i.w=\frac{1+z}{1-z}$ ii. $W=\frac{1}{z-2i}$
CO3	K4	13a.	Evaluate $\int_C \bar{z} dz$ from z=0 to z=4+2i along the curve C consisting of the line segment from z=0 to z=2i followed by the line segment from z=2i to z=4+2i. (OR)
CO3	K4	13b.	Evaluate $\int_C \frac{zdz}{z^2-1}$ where C is th positively oriented circle $ z =2$.
CO4	K4	14a.	Expand cosz into a Taylor's series about the point $z=\frac{\pi}{2}$ and determine the region of convergence.
CO4	K4	14b.	Find the Laurent's series for $\frac{z}{(z+1)(z+2)}$ about z=-2.
CO5	K5	15a.	Find the poles of $f(z) = \frac{z^2+4}{z^3+2z^2+2z}$ and determine the residues at the poles. (OR)
CO5	K5	15b.	Prove that $\int_C \frac{e^{2z}}{(z+1)^3} dz = \frac{4\pi i}{e^2}$ where C is $ z = \frac{3}{2}$.

Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$
CO1	КЗ	16a.	Show that u(x,y)=sinxcoshy+2cosxsinhy+x²-y²+4xy is harmonic.Find an analytic function f(z) interms of z with the given u for its real part. (OR)
CO1	К3	16b.	Given the function $w=z^3$ where $w=u+iv$. Show that u and v satisfy the CR equations ,Prove that the families of curves $u=c_1$ and $v=c_2$ (c_1 and c_2 are constants) are orthogonal to each other.
CO2	K4	17a.	Determine the bilinear transformation which maps 0,1,∞ into i,-1,-I respectively. Under this transformation show that the interior of the unit circle of the z plane maps onto the half plane left to the v axis(left half of the w plane). (OR)
CO2	K4	17b.	Prove that a bilinear transformation $w = \frac{az+b}{cz+d}$ where ad-bc $\neq 0$ maps the real axis into itself iff a,b,c,d are real.
CO3	K4	18a.	Show that $\int_c z ^2 dz = -1 + i$ where C is the square with vertices $O(0,0), A(1,0), B(1,1)$ and $C(0,1)$.
CO3	K4	18b.	State and Prove Cauchy's theorem.
CO4	K5	19a.	State and Prove Taylor's series. (OR)
CO4	K5	19b.	Find the Laurent's series expansion of the function $\frac{z^2-1}{(z+2)(z+3)}$ valid in the annular region $2 < z < 3$.
CO5	K5	20a.	Stat and Prove Cauchy's Residue theorem. (OR)
CO5	K5	20b.	Evaluate ,using i.Cauchy's integral formula ii.Residue theorm $\int_C \frac{Z+1}{Z^2+2Z+4} dz$ where C is the Circle $ z+1+i =2$.